Synthesis and Characterization of a [5.5]Paracyclophane-Containing Silicon by NMR Spectroscopy and X-ray Crystallography

Elizabeth Gómez and Norberto Farfán

Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 México D.F., México

Received 17 November 1998; revised 5 February 1999

ABSTRACT: The synthesis and characterization of 1,3,10,12-tetraoxo-2,11-(diphenylsilylene)[5.5]paracyclophane obtained by reaction of 1,4-benzenedimethanol and dichlorodiphenylsilane is reported. The structure was established by mass spectrometry; ¹H, ¹³C, and ²⁹Si NMR; and X-ray diffraction analysis.© 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 351–354, 1999

INTRODUCTION

In previous studies, we have reported that the reaction of 2,6-pyridinedimethanol with phenylboronic acid provides a tetrameric boronate ring system of 20 members [1], while the reaction of 2-salicylideneaminoethanol derivatives with the same acid yields monomeric or dimeric boronates depending on the number and position of the substituents in the ligand used [2,3]. This is in contrast to the behavior of transition metal ions and heavier elements of the main group that induce for both ligands the formation of monomeric [4,5] or trimeric complexes [6]. With respect to smaller main group elements, it has been reported that the reaction of 2,6-pyridinedimethanol or 1,3-benzenedimethanol with dichlorodimethylsilane or dichlorodiphenylsilane affords dimeric compounds of cyclophane-type structures [7,8]. Thereby, the formation of [2.2] and [2.2.2]cyclophanes with silicon–silicon bridging units has been reported [9], whereby the [2.2]cyclophane resulted in a bis(disilyl- η^6 -arene)metal complex with chromium [10]. The [2.3]-, [2.4]-, and [2.6]parasilacyclophanes were obtained from intramolecular [$2\pi + 2\pi$] photocycloadditions [11]. Recently, [2.2]paracyclophanes with disilanylene bridges have been used as precursors in polymer syntheses [12].

RESULTS AND DISCUSSION

1,3,10,12-Tetraoxo-2,11-(diphenylsilylene)[5.5]paracyclophane (2) was obtained by reaction of 1,4-benzenedimethanol with dichlorodiphenylsilane (Scheme 1) in toluene in the presence of triethylamine. The mass spectrum shows the molecular ion peak of m/z = 636 corresponding to the dimeric compound. An unequivocal ¹H and ¹³C NMR spectral assignment was achieved by HETCOR and COLOC experiments. The 1H and 13C NMR spectra of 2 consist only of signals for a quarter of the molecule, so that the point group is D_{2h}. In the ¹H NMR spectrum, the singlet signal for the aromatic H-6 hydrogen atom is located at 6.95 ppm, 0.30 ppm upfield shifted in comparison to the corresponding hydrogen in 1,4benzenedimethanol. The signal at -30.67 ppm in the ²⁹Si NMR spectrum is in agreement with the chemical shifts of other tetracoordinated silicon compounds [8,13]. The tetracoordination of the silicon atom is confirmed by the X-ray crystallographic

Correspondence to: Elizabeth Gómez: jfarfan@mail.cinvest ay.mx Contract Grant Sponsor: CONACYT

^{© 1999} John Wiley & Sons, Inc. CCC 1042-7163/99/050351-04

SCHEME 1

study (Tables 1 and 2). The bond angles at the silicon atom vary from 104.5(1) to 113.2(1)°, the C(8)-Si(1)-C(14) bond angle being the largest and O(2)-Si(1)-C(14) being the smallest one. In the solid state, the symmetry (Ci) of the molecule is lower than in solution; the aromatic rings of the 1,4-benzenedimethoxy group are not perfectly eclipsed (Figure 1) but have a glide of 1.385 Å. The distance between them is 3.909 Å, being 0.45 Å larger than the distance in other cyclophane-type structures with two disilanylene bridges [9]. The silicon-silicon distance is 8.748 Å. The distortion of the tetrahedral geometry at the silicon atom can also be seen from the difference between the C(8)-Si(1)-O(1)-C(20) and C(14)-Si(1)-O(2)-C(1) torsion angles with values of -179.8 and - 166.4°, respectively. Figure 2 depicts the molecular packing in the unit cell, dashed lines showing distances of 6.946 Å between aromatic rings.

CONCLUSIONS

The paracyclophane **2** is air stable, soluble, and does not decompose in solution for several weeks; it therefore presents better perspectives as an ion cage than the macrocyclic boronates that we have reported so far. Thus, this compound could be used in rotaxane chemistry [14] and, due to the cavity size, also for the complexation of transition metals.

Experimental

¹H, ¹³C, and ²⁹Si NMR spectra were recorded on a Jeol GSX270 equipment, whereby Hetcor and Coloc experiments were performed to assign the spectra adequately. The ²⁹Si NMR spectrum was recorded with the Inept pulse sequence [15]. Chemical shifts (ppm) are relative to $(CH_3)_4$ Si. The mass spectrum was obtained on an HP 5989A spectrometer. The melting point was obtained on a Gallenkamp MFB-595 apparatus and is uncorrected. The elemental mi-

TABLE 1 Atomic Coordinates (\times 10⁴) and Equivalent Isotropic Displacement Parameters (Å² × 10³) for C₄₀H₃₆O₄Si₂ (**2**). *U*(eq) is Defined as One-third of the Trace of the Orthogonalized *U_{ii}* tensor.

	X	У	Ζ	U(eq)
Si (1)	2133.4 (6)	2255.1 (8)	4601.3 (7)	44.9 (3)
O(1)	3010.7 (14)	1730 (2)	3961 (2)	50.2 (5)
O (2)	2164.9 (15)	1476 (2)	5721.4 (15)	49.5 (5)
C (1)	2973 (2)	1590 (3)	6706 (2)	56.6 (8)
C (2)	4021 (2)	1042 (3)	6609 (2)	45.5 (7)
C (3)	4152 (2)	– 217 (̀3)́	6536 (3)	54.2 (̀8)
C (4)	5114 (2)	-725 (3)	6445 (2)	51.1 (8)
C (5)	5970 (2)	30 (3)	6441 (2)	45.1 (7)
C (6)	5837 (2)	1288 (3)	6512 (3)	56.1 (8)
C (7)	4882 (2)	1788 (3)	6591 (2)	55.0 (8)
C (8)	2453 (2)	3905 (3)	4900 (2)	52.5 (8)
C (9)	1772 (3)	4609 (3)	5365 (3)	71.7 (10)
C (10)	1988 (4)	5826 (4)	5646 (3)	93.2 (13)
C (11)	2878 (4)	6358 (4)	5465 (4)	100 (2)
C (12)	3576 (4)	5700 (4)	5002 (4)	97.7 (15)
C (13)	3359 (3)	4477 (3)	4716 (3)	69.3 (10)
C (14)	776 (2)	2010 (3)	3770 (2)	50.1 (7)
C (15)	458 (3)	2482 (5)	2738 (3)	101 (2)
C (16)	-537 (3)	2244 (5)	2087 (3)	115 (2)
C (17)	– 1230 (3)	1545 (4)	2457 (3)	82.3 (11)
C (18)	-969 (3)	1104 (4)	3494 (4)	91.6 (13)
C (19)	28 (3)	1336 (3)	4139 (3)	73.3 (10)
C (20)	2966 (2)	466 (3)	3615 (3)	57.2 (8)

TABLE 2 Selected Bond Lengths (Å) and Angles (deg) for $C_{_{\!\!\!\!\!\!\!40}}H_{_{\!\!\!36}}O_{_{\!\!\!4}}Si_{_2}\left(2\right)$

Si(1)–O(2)	1.634 (2)	O(2)–Si(1)–O(1)	111.1 (1)
Si(1)–O(1)	1.634 (2)	O(2)-Si(1)-C(8)	111.2 (1)
Si(1)–C(8)	1.850 (3)	O(1) - Si(1) - C(8)	106.6 (1)
Si(1)–C(14)	1.851 (3)	O(2)-Si(1)-C(14)	104.5 (1)
O(1)–C(20)	1.431 (4)	C(8)–Si(1)–C(14)	113.2 (1)
O(2) - C(1)	1.436 (3)	C(20)–O(1)–Si(1)	119.7 (2)
C(1)–C(2)	1.510 (4)	C(1)–O(2)–Si(1)	124.8 (2)
C(2)–C(3)	1.377 (4)	O(2)–C(1)–C(2)	113.0 (2)
C(2)–C(7)	1.380 (4)	O(1)-C(20)-C(5a)	112.5 (2)

FIGURE 1. Molecular structure of 1,3,10,12-tetraoxo-2,11-(diphenylsilylene)[5.5]paracyclophane (2).

croanalysis was performed by Oneida Research Services (Whitesboro, NY). The X-ray crystallographic study was done on an Enraf Nonius CAD4 diffractometer, $\lambda_{(MoK\alpha)} = 0.71069$ Å, graphite monochromator, T = 293 K, $\omega/2\theta$ scan, range $2 < \theta < 25^{\circ}$.

Crystal Data for 2. Colorless cubic crystals of $C_{40}H_{36}O_{4}Si_{2}$ (M = 636.87 g mol⁻¹) with crystal dimensions of 0.46 \times 0.36 \times 0.33 mm³ crystallized in the monoclinic space group $P2_1/c$, a = 12.945(3), b = 10.811(2), c = 12.573(3) Å, $\beta = 102.95(3)^{\circ}$, V =1714.8(7) Å³, Z = 2, ρ_{calcd} = 1.233 gcm⁻³. A total of 6347 reflections were measured, of which 3005 were independent. Corrections were made for Lorentz and polarization effects. The structure was solved by direct methods (SHELXS-86). Using SHELXS-93 [16], all nonhydrogen atoms were refined anisotropically by full-matrix least squares, and hydrogen atoms were fixed and refined with an overall isotropic thermal parameter. Refinements were based on F^2 with values R = 0.0462, $R_w = 0.1160$ from 1669 reflections with $F > 4\sigma(F)$ for 209 parameters, s =1.012. Largest residual electron density peak/hole in the final difference map: $\rho_{\text{max}} = 0.275$, $\rho_{\text{min}} = -0.190$ e/Å³.

Preparation of 1,3,10,12-tetraoxo-2,11-(diphenylsilylene)[5.5]paracyclophane (2). A solution of 0.10 g of 1,4-benzenedimethanol (0.72 mmol) and Et_3N

FIGURE 2. Molecular packing in the unit cell for compound **2.**

0.15 g (1.44 mmol) in 30 mL of toluene was cooled to 0°C, and 0.18 g (0.72 mmol) of dichlorodiphenylsilane was added dropwise. The mixture was allowed to warm to room temperature and brought to reflux for 24 hours. The precipitate containing Et₃NHCl was separated by filtration, and the solvent was removed under vacuum to afford a vellow oil. Et₂O was added, and 0.060 g (27.6%) of a white solid was obtained, mp 204–206°C. Suitable crystals for X-ray diffraction were obtained from chloroform. ¹H NMR (270.16 MHz, CDCl₃) δ: 4.68 (2H, s, CH₂), 6.95 (2H, s, H-6), 7.44–7.47 (3H, m, H-*m*, H-*p*), 7.78–7.781 (2H, dd, J = 2.2, 7.6 Hz, H-o) ppm; ¹³C NMR (67.94 MHz, CDCl₃) *δ*: 65.14 (C-4), 125.96 (C-6), 128.10 (C-*m*), 130.54 (C-p), 132.68 (C-i), 135.09 (C-o), 138.70 (C-5) ppm; ²⁹Si NMR (53.67 MHz, CDCl₃) δ : - 30.67 ppm; MS m/z (%): 636 (M+, 37%), 558 (5), 361 (6), 319 (14), 211 (12), 199 (100), 104 (89), 78 (19). Anal. calcd for C₄₀H₃₆O₄Si₂: C, 75.43; H, 5.70. Found: C, 74.91; H, 5.87.

Full crystallographic data for **2** are deposited at the Cambridge Crystallographic Data Centre [17].

REFERENCES

[1] Höpfl, H.; Farfán, N. J. Organomet Chem 1997, 547, 71.

- [2] Höpfl, H.; Sánchez, M.; Barba, V.; Farfán, N.; Rojas, S.; Santillan, R. Inorg Chem 1998, 37, 1679.
- [3] Höpfl, H.; Sánchez, M.; Farfán, N.; Barba, V. Can J Chem, 1998, 76, 1352.
- [4] Berg, J. M.; Holm, R. H. Inorg Chem 1983, 22, 1768.
- [5] Gielen, M.; Bouâlam, M.; Biesemans, M.; Mahieu, B.; Willem, R. Heterocycles 1992, 34, 549.
- [6] Höpfl, H.; Farfán, N. Heteroatom 1998, 9, 377.
- [7] Prakasha, T. K.; Chandrasekaran, A.; Day, R. O.; Holmes, R. R. Inorg Chem 1996, 35, 4342.
- [8] Rezzonico, B.; Grignon-Dubois, M.; Laguerre, M.; Léger, J. M. Organometallics 1998, 17, 2656.
- [9] Sekiguchi, A.; Yatabe, T.; Kabuto, C.; Sakurai, H. Angew Chem Int Ed Engl 1989, 28, 757.
- [10] Elschenbroich, C.; Hurley, J.; Massa, W.; Baum, G. Angew Chem Int Ed Engl 1988, 27, 684.
- [11] Nakanishi, K.; Mizuno, K.; Otzuji, Y. J Chem Soc Perkin Trans 1 1990, 12, 3362.
- [12] Kira, M.; Tokura, S. Organometallics 1997, 16, 1100.
- [13] Williams, E. A.; Cargioli, J. D. Annu Rep NMR Spectrosc 1979, 9, 221.
- [14] Chambron, J. C.; Sauvage, J. P. Chem Eur J 1998, 4, 1362.
- [15] Blinka, T. A.; Helmer, B. J.; West, R. Adv Organomet Chem 1984, 23, 193.
- [16] Sheldrick, G. M. SHELXL-93: Program for Crystal Structure Refinement, University of Göttingen, 1993.. 1993.
- [17] University Chemical Laboratory, Cambridge Crystallographic Data Centre, Lensfield Read, Cambridge CB2 1.EW, United Kingdom.